

Supervisor : Francesco Martinelli

Engineering Sciences

Università degli Studi di Roma Tor Vergata

Modelling of supply chains inspired by traffic dynamics

Customer

One-dimensional supply-chain

Dynamics inventory :

$$\frac{dN_b(t)}{dt} = \lambda_b(t) - \lambda_{b+1}(t)$$
Rate received Rate delivered products products

Dynamics delivery rate :

$$\frac{d\lambda_b(t)}{dt} = \frac{\left(W_b(t) - \lambda_b(t)\right)}{\tau}$$

 $\tau = {\rm adaptation\ time\ interval}$

 $W_b(t)$ = desired delivery rate

Management function

$$(W_b(t)) = W_b(\{N_a(t)\}, \{N_a(t + \Delta t)\})$$
 where $N_a(t + \Delta t) \approx N_a(t) + \Delta t \frac{dN_a(t)}{dt}$ General strategy

Our strategy
$$\longrightarrow$$
 $W_b(t) = W(N_{(b)}(t))$

$$N_{(b)}(t) = \sum_{c=-n}^{n} w_c(N_{b+c}(t) + \Delta t \frac{dN_{b+c}(t)}{dt}) \longrightarrow \text{Weighted mean value}$$

$$w_c = 0$$
 if $b + c < 0$ or $b + c > u$

$$\sum_{c=-n}^{n} w_c = 1 \quad \longrightarrow \quad \text{Normalization condition}$$

 Δt = forecast time horizon

Stability condition

Dynamic equations in the vicinity of the stationary state:

Stationary solutions

$$\star$$
 Inventory : N_0

The Delivery rate :
$$\lambda_0 = W(N_0)$$
 $\delta \lambda_b(t) = \lambda_b(t) - W(N_0)$

$$\delta N_b(t) = N_b(t) - N_0$$

$$\delta\lambda_b(t) = \lambda_b(t) - W(N_0)$$

$$\tau < \Delta t + \frac{1}{|W'(N_0)|} \left(\frac{1}{2} + \sum_{c=-n}^{n} c w_c \right)$$

Dynamical solution in the vicinity of the stationary state (I)

Deviation of the inventory:

$$\delta N_b(t) = N_b(t) - N_0$$

$$\frac{d\delta N_b(t)}{dt} = \delta \lambda_b(t) - \delta \lambda_{b+1}(t)$$

Deviation of the delivery rate:

$$\delta \lambda_b(t) = \lambda_b(t) - W(N_0)$$

$$\frac{d\delta\lambda_b(t)}{dt} = \frac{1}{\tau} \left[W'(N_0) \left(\delta N_b(t) + \Delta t \frac{d\delta N_b(t)}{dt} \right) - \delta\lambda_b(t) \right]$$

Deriving and substituting...

Dynamical solution in the vicinity of the stationary state (II)

... we obtain:
$$\delta \ddot{\lambda}_b(t) + 2\gamma \delta \dot{\lambda}_b(t) + {w_0}^2 \delta \lambda_b(t) = f_b(t)$$

harmonic oscillator

Damped forced

$$2\gamma = \frac{1 + |W'(N_0)|\Delta t}{\tau}$$

$$w_0^2 = \frac{|W'(N_0)|}{\tau}$$

$$w_0^2 = \frac{|W'(N_0)|}{\tau} \qquad f_b(t) = \frac{|W'(N_0)|}{\tau} \left(\delta \lambda_{b+1}(t) + \Delta t \frac{d\delta \lambda_{b+1}(t)}{dt} \right)$$

Solution at steady state under the effect of a periodic oscillation of the form $\longrightarrow f_u(t) = f_u^0 \cos \alpha t$

$$\longrightarrow f_u(t) = f_u^0 \cos \alpha t$$

(u is the last supplier)

$$\delta\lambda_u(t) = f_u^0 F \cos(\alpha t - \varphi)$$

where
$$\tan \varphi = -\frac{2\gamma \alpha}{\alpha^2 - {w_0}^2}$$
 $F = \frac{1}{\sqrt{(\alpha^2 - {w_0}^2)^2 + 4\gamma^2 \alpha^2}}$

Dynamical solution in the vicinity of the stationary state (III)

$$f_b(t) = \frac{|W'(N_0)|}{\tau} \left(\delta \lambda_{b+1}(t) + \Delta t \frac{d\delta \lambda_{b+1}(t)}{dt} \right)$$
For b = u-1
$$f_{u-1}(t) = \frac{|W'(N_0)|}{\tau} \left(\delta \lambda_u(t) + \Delta t \frac{d\delta \lambda_u(t)}{dt} \right)$$

$$\delta \lambda_u(t) = f_u^0 F \cos(\alpha t - \varphi)$$

$$f_{u-1}(t) = f_{u-1}^0 \cos(\alpha t - \varphi - \delta_{u-1})$$

Bullwhip effect

$$f_{u-1}(t) = f_{u-1}^{0} \cos(\alpha t - \varphi - \delta_{u-1})$$

$$f_{u-1}^{0} = \frac{|W'(N_0)|}{\tau} f_u^{0} F \sqrt{1 + (\alpha \Delta t)^2}$$

(With $\tan \delta_{u-1} = -\alpha \Delta t$)

If
$$\frac{f_{u-1}^0}{f_u^0} > 1$$

OSCILLATIONS INVENTORIES
WILL INCREASE

Optimal velocity model

-Dynamics distance between vehicles:

$$\frac{dd_b(t)}{dt} = -\left(v_b(t) - v_{b+1}(t)\right) \iff \frac{dN_b(t)}{dt} = \lambda_b(t) - \lambda_{b+1}(t)$$

-Dynamics velocity vehicles:

$$\frac{dv_b(t)}{dt} = \frac{V_{opt}(d_b(t)) - v_b(t)}{\tau} \iff \frac{d\lambda_b(t)}{dt} = \frac{\left(W_b(t) - \lambda_b(t)\right)}{\tau}$$

The choice of V_{opt} corresponds to the choice of the control strategy

Control strategies (I)

- Effects due to choice of adaptation time au and forecast time horizon Δt (considering the stability condition).

Control strategies (II)

 Adaptation of the consumption rate to either downstream suppliers (pull strategies) or upstream suppliers (push strategies).

Control strategies (III)

- Taking in account the inventories of other suppliers N_a by choosing specific weights in the management function.

$$N_{(b)}(t) = w_0 N_b(t) + (1 - w_0) N_a(t)$$

With
$$a = b+1, b+2, u+1$$

Conclusions

It should be possible to obtain the stabilizing effects due to the choice of a specific control strategy in more complex systems than the one-dimensional supply chain

Thanks for your attention!

